ANALOG (SAMPLE ASSIGNMENT)

1) A series-shunt feedback amplifier representable by figure 7.1 and using an ideal basic voltage amplifier operates with $\mathrm{Vs}=100 \mathrm{mV}, \mathrm{V}_{\mathrm{f}}=90 \mathrm{mV}$ and $\mathrm{Vo}=10 \mathrm{~V}$. What are the values of A and β, which correspond? Include the correct units for each. Solution:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{f}}=\beta^{*} \mathrm{Vo}_{\mathrm{o}} \\
& \mathrm{~B}=\mathrm{Vo} / \mathrm{V}_{\mathrm{f}}=90 \mathrm{mV} / 10 \mathrm{~V}=9 \mathrm{mV} / \mathrm{V}
\end{aligned}
$$

$$
\begin{aligned}
& V o=A\left(V s-V_{f}\right) \\
& A=V o /\left(V s-V_{f}\right)=10 \mathrm{~V} /(100 \mathrm{mV}-90 \mathrm{mV})=1 \mathrm{~V} / \mathrm{mV}
\end{aligned}
$$

2) A series-Shunt feedback amplifier utilizes the feedback circuit shown in figure
a) Find the expressions for the h-parameters of the feedback circuit.
(Figure 7.3 b)
Since: $\mathrm{V}_{1}=\mathrm{h}_{11} \mathrm{I}_{1}+\mathrm{h}_{12} \mathrm{~V}_{2}$
$\mathrm{I}_{2}=\mathrm{h}_{21} \mathrm{I}_{1}+\mathrm{h}_{22} \mathrm{~V}_{2}$
$h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V 2=0}=R_{1} \| R_{2}$

$$
h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I 1=0}=\frac{R_{2}}{R_{1}+R_{2}}
$$

$$
\begin{aligned}
& h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V 2=0}=-\frac{R_{2}}{R_{1}+R_{2}} \\
& h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I I=0}=\frac{1}{R_{1}+R_{2}}
\end{aligned}
$$

b) If $\mathrm{R} 1=1 \mathrm{k}$ ohm and $\beta=0.01$, what are the values of all four h parameters?

$$
\beta=\mathrm{h}_{12}=0.01=\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)
$$

R1/R2=99
$R 2=R 1 / 99=1000 / 99=10.1 \mathrm{ohm}$

$$
\begin{aligned}
& \mathrm{h}_{11}=\mathrm{R} 1 \| \mathrm{R} 2=10(\mathrm{ohm}) \\
& \mathrm{h}_{12}=\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)=0.01(\mathrm{~V} / \mathrm{V}) \\
& \mathrm{h}_{21}=-\mathrm{h} 12=-0.01(\mathrm{~A} / \mathrm{A}) \\
& \mathrm{h}_{22}=1 /(\mathrm{R} 1+\mathrm{R} 2)=0.00099(1 / \mathrm{ohm})
\end{aligned}
$$

c) For the case $\mathrm{Rs}=1 \mathrm{k}$ ohm and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ ohm, sketch and label an equivalent circuit following the model in figure 7.3 c .

(b)

(c)
3) A series-series feedback amplifier employs a transconductance amplifier having $\mathrm{gm}=100 \mathrm{~mA} / \mathrm{V}$, input resistance of 10 Kohm , and output resistance of 100 k ohm . The feedback network has $\beta=0.01 \mathrm{~V} / \mathrm{mA}$, an input resistance (with port 1 opencircuited) of 100 ohm , and an input resistance (with port 2 open circuited) of 10 k ohm. The amplifier operates with a signal source having a resistance of 10 k ohm and with a load resistance of 10 k ohm. Find A_{f}, Rin, and Rout Solution:

A circuit
Solution:
Use the A circuit, we can find out the A
$\mathrm{V} 1=10 /(10+10+10)^{*} \mathrm{Vi}^{\prime}=\mathrm{Vi}^{\prime} / 3$
Io' $=\mathrm{gmV} 1^{*} 100 \mathrm{k} /(100 \mathrm{k}+10 \mathrm{k}+100 \mathrm{ohm})$
$=\mathrm{gmVi} / 3^{*} 100 \mathrm{k} /(100 \mathrm{k}+10 \mathrm{k}+100 \mathrm{ohm})$
$=100 \mathrm{~mA}^{*} 1 / 3^{*} 100 \mathrm{k} /(100 \mathrm{k}+10 \mathrm{k}+100 \mathrm{ohm}) \mathrm{Vi}{ }^{\prime}$
$\mathrm{A}=\mathrm{Io}{ }^{\prime} / \mathrm{Vi}{ }^{\prime}=30.28 \mathrm{~mA} / \mathrm{V}$
$A_{f}=A /(1+A B)=30.28 /(1+30.28 * 0.1)=7.52 \mathrm{~mA} / \mathrm{V}$
Ri=Rs + Rinput + R1 $=30 \mathrm{k}$ ohm
$\mathrm{R}_{\mathrm{if}}=(1+\mathrm{A} \beta) * \mathrm{Ri}=120.8 \mathrm{k}$ ohm
Rin $=\mathrm{R}_{\mathrm{if}}-\mathrm{Rs}=120.8 \mathrm{k}$ ohm- 10 k ohm=110.8 k ohm
Ro $=\mathrm{R}_{\mathrm{L}}+$ Routput $+\mathrm{R} 2=110.1 \mathrm{k}$ ohm
$R_{\mathrm{of}}=(1+\mathrm{A} \beta) * \mathrm{Ro}=443.4 \mathrm{k}$ ohm
Rout $=\mathrm{R}_{\text {of }}-\mathrm{R}_{\mathrm{L}}=443.4 \mathrm{k}$ ohm -10 k ohm $=433.4 \mathrm{k}$ ohm

For further details
visit us at http://www.assignmentpedia.com/electronics-engineering-assignment-help.html or email us at info@assignmentpedia.com or call us at +1-520-8371215 (USA), +61-75-6412213 (AUS)

